Maximum likelihood sub-band weighting for robust speech recognition
نویسندگان
چکیده
Sub-band speech recognition approaches have been proposed for robust speech recognition, where full-band power spectra are divided into several sub-bands and then likelihoods or cepstral vectors of the sub-bands are merged depending on their reliability. In conventional sub-band approaches, correlations across the sub-bands are not modeled and the merging weights can only be set experientially or estimated during training procedures, which may not match observed data. The methods further degrade performance for clean speech. We proposed a novel sub-band approach, where frequency sub-bands are multiplied with weighting factors and merged, which considers sub-band dependence and proves to be more robust than both full-band and conventional sub-band approaches. And further the weighting factors can be obtained by using the maximum-likelihood estimation approaches in order to minimize the mismatch between the trained models and the observed features. Finally we evaluated our methods on both the Aurora2 task and the Resource Management task and showed improvement of performance on the two tasks consistently.
منابع مشابه
Maximum likelihood sub-band adaptation for robust speech recognition
Noise-robust speech recognition has become an important area of research in recent years. In current speech recognition systems, the Mel-frequency cepstrum coefficients (MFCCs) are used as recognition features. When the speech signal is corrupted by narrow-band noise, the entire MFCC feature vector gets corrupted and it is not possible to exploit the frequency-selective property of the noise si...
متن کاملIMPROVED HMM ENTROPY FOR ROBUST SUB−BAND SPEECH RECOGNITION (ThuPmOR1)
In recent years, sub−band speech recognition has been found useful in robust speech recognition, especially for speech signals contaminated by band−limited noise. In sub−band speech recognition, full band speech is divided into several frequency sub−bands and then sub−band feature vectors or their generated likelihoods by corresponding sub−band recognizers are combined to give the result of rec...
متن کاملNoise Robust Speaker Identification Using Sub-Band Weighting in Multi-Band Approach
Recently, many techniques have been proposed to improve speaker identification in noise environments. Among these techniques, we consider the feature recombination technique for the multi-band approach in noise robust speaker identification. The conventional feature recombination technique is very effective in the band-limited noise condition, but in broad-band noise condition, the conventional...
متن کاملMulti-Channel Sub-Band Speech Recognition
Two distinct fields of research into robust speech recognition are the use of microphone arrays for signal enhancement and the use of independent frequency sub-band models for robust recognition. In this article, we propose and investigate the integration of these two techniques on two different levels. First, a broad-band beamforming microphone array allows for natural integration with sub-ban...
متن کاملNoise Robust Speech Recognition Using Multi-Channel Based Channel Selection And ChannelWeighting
In this paper, we study several microphone channel selection and weighting methods for robust automatic speech recognition (ASR) in noisy conditions. For channel selection, we investigate two methods based on the maximum likelihood (ML) criterion and minimum autoencoder reconstruction criterion, respectively. For channel weighting, we produce enhanced log Mel filterbank coefficients as a weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003